in

We now know what caused comet ‘Oumuamua’s strange orbit

Remember what feels like decades ago, when we were visited by a comet from another solar system in 2019? Interstellar comet ‘Oumuamua captured headlines when its cigar-shaped body was spotted following an unusual orbit through our solar system, and subsequent research suggested it might once have been part of a Pluto-like planet and was possibly pancake-shaped.

One thing particularly puzzled astronomers, though, because the comet was accelerating away from the sun in a path that seemed strange. Now, researchers say they have an explanation for its unusual pathway, and it isn’t aliens — it’s a natural phenomenon called outgassing.

An artist’s depiction of the interstellar comet ‘Oumuamua, as it warmed up in its approach to the sun and outgassed hydrogen (white mist), which slightly altered its orbit. The comet, which is most likely pancake-shaped, is the first known object other than dust grains to visit our solar system from another star. NASA, ESA and Joseph Olmsted and Frank Summers of STScI
Comets are primarily made of dust, rock, and ice, and as they approach the sun they warm up and give off water and dust particles (which form comets’ distinctive tails). We are used to observing average-sized comets which eject gases, giving the comet a tiny kick and changing its trajectory ever so slightly.

But ‘Oumuamua was much smaller than your typical comet, at just over 100 meters across, and when it was first observed, it didn’t have a tail and didn’t seem to be ejecting water. So how could its trajectory be different from the typical elliptical orbit created by gravity?

The lead researcher, an astrochemist, worked with an astronomer on the idea that the hydrogen being outgassed by the comet might have been trapped within the comet’s own ice.

“A comet traveling through the interstellar medium basically is getting cooked by cosmic radiation, forming hydrogen as a result. Our thought was: If this was happening, could you actually trap it in the body, so that when it entered the solar system and it was warmed up, it would outgas that hydrogen?” researcher Jennifer Bergner said in a statement. “Could that quantitatively produce the force that you need to explain the non-gravitational acceleration?”

The pair found that the trapping effect did happen, but only in a thin shell around a comet’s outer body. Most comets we observe are much bigger than ‘Oumuamua, at a few miles across, so the effect is almost invisible. But in tiny ‘Oumuamua, the researchers found that the effect would be significant enough to alter its orbit.

“What’s beautiful about Jenny’s idea is that it’s exactly what should happen to interstellar comets,” the other researcher, Darryl Seligman, said. “We had all these stupid ideas, like hydrogen icebergs and other crazy things, and it’s just the most generic explanation.”

The research is published in the journal Nature.

Editors’ Recommendations

Scientists observe the aftermath of a spacecraft crashing into asteroid

Hubble sees the changing seasons on Jupiter and Uranus

Astronomers increasingly troubled by satellite constellations

A small, fuzzy dwarf galaxy in our neighborhood captured by Hubble

NASA picks a commercial partner to visit the far side of the moon

How to watch NASA unveil its next-generation spacesuit

NASA Live: Official Stream of NASA TV

NASA is about to unveil a prototype of the all-new spacesuit that astronauts will wear when they set foot on the moon in the highly anticipated Artemis III mission, which is currently slated for 2025.

Read more

NASA may use a ‘space tug’ to decommission the space station

NASA is aiming to build a special spacecraft capable of guiding the International Space Station to a safe deorbit position when it’s decommissioned in 2030.

Details of the plan were laid out in recent days when the White House released its budget request for 2024.

Read more

Astronomers share early images from James Webb’s galaxy survey

One of the major aims of the James Webb Space Telescope is to observe some of the earliest galaxies in the universe, and to do that it needs to be able to see extremely distant objects. But looking at a particular very old galaxy in detail is only half of the problem. To truly understand the earliest stages of the universe, astronomers also need to see how these very old galaxies are distributed so they can understand the large-scale structure of the universe.

That’s the aim of the COSMOS-Web program, which is using James Webb to survey a wide area of the sky and look for these rare, ancient galaxies. It aims to study up to 1 million galaxies during over 255 hours of observing time, using both Webb’s near-infrared camera (NIRCam) and its mid-infrared instrument (MIRI) camera. While there is still plenty of observing left to do, the researchers in the COSMOS-Web program recently shared some of their first results.

Read more

Source: Digital Trends | Read More

What do you think?

Leave a Reply

Your email address will not be published. Required fields are marked *

GIPHY App Key not set. Please check settings

Spring sales make now a great time to buy a Bluetooth speaker

“And That Is The Truth”: Gwyneth Paltrow Denies Fault in Ski Collision